Binary Search Tree 




Binary Search Tree

Binary Search Tree atau yang sering di singkat menjadi BST adalah  tree yang hanya dapat mempunyai maksimal 2 percabangan saja tapi  setiap clild node sebelah kiri selalu lebih kecil nilainya dari pada root node.








Aturan yang ada pada Binary Search Tree :

  • Setiap child node sebelah kiri harus lebih kecil nilainya daripada root nodenya.
  • Setiap child node sebelah kanan harus lebih besar nilainya daripada root nodenya.

Ada 3 jenis cara untuk melakukan penelusuran data (traversal) pada BST :

  • PreOrder : Print data, telusur ke kiri, telusur ke kanan
  • InOrder : Telusur ke kiri, print data, telusur ke kanan
  • Post Order : Telusur ke kiri, telusur ke kanan, print data
Pre-order
a. Cetak data pada root
b. Secara rekursif mencetak seluruh data pada subpohon kiri
c. Secara rekursif mencetak seluruh data pada subpohon kanan


In-order

a. Secara rekursif mencetak seluruh data pada subpohon kiri
b. Cetak data pada root
c. Secara rekursif mencetak seluruh data pada subpohon kanan

Post-order

a. Secara rekursif mencetak seluruh data pada subpohon kiri
b. Secara rekursif mencetak seluruh data pada subpohon kanan
c. Cetak data pada root









Contoh Coding:

#include <stdio.h>
#include <stdlib.h>

//inisialisasi struct
struct data{
 int number;
 //pointer untuk menampung percabangan kiri dan kanan
 data *left, *right;
}*root;

//fungsi push untuk menambah data
void push(data **current, int number){
 //jika pointer current kosong maka akan membuat blok data baru
 if((*current)==NULL){
  (*current) = (struct data *)malloc(sizeof data);
  //mengisi data
  (*current)->number=number;
  (*current)->left = (*current)->right = NULL;
 //jika tidak kosong, maka akan dibandingkan apakah angka yang 
 //ingin dimasukkan lebih kecil dari pada root
 //kalau iya, maka belok ke kiri dan lakukan rekursif 
 //terus menerus hingga kosong
 }else if(number < (*current)->number){
  push(&(*current)->left, number);
 //jika lebih besar, belok ke kanan
 }else if(number >= (*current)->number){
  push(&(*current)->right, number);
 }
}

//preOrder : cetak, kiri, kanan
void preOrder(data **current){
 if((*current)!=NULL){
  printf("%d -> ", (*current)->number);
  preOrder(&(*current)->left);
  preOrder(&(*current)->right);
 }
}

//inOrder : kiri, cetak, kanan
void inOrder(data **current){
 if((*current)!=NULL){
  inOrder(&(*current)->left);
  printf("%d -> ", (*current)->number);
  inOrder(&(*current)->right);
 }
}

//postOrder : kiri, kanan, cetak
void postOrder(data **current){
 if((*current)!=NULL){
  postOrder(&(*current)->left);
  postOrder(&(*current)->right);
  printf("%d -> ", (*current)->number);
 }
}

//searching data
void search(data **current, int number){
 //jika pointer current memiliki data
 if((*current)!=NULL){
  //cek, apakah datanya lebih kecil. Jika iya, belok ke kiri
  if(number<(*current)->number){
   search(&(*current)->left,number);
  //jika lebih besar, maka belok ke kanan
  }else if(number>(*current)->number){
   search(&(*current)->right,number);
  //jika sama dengan, maka angka ketemu
  }else{
   printf("Found : %d", (*current)->number);
  }
 //jika tidak ada data lagi (not found)
 }else{
  printf("Not Found.");
 }
}

void main(){
 push(&root, 11);
 push(&root, 22);
 push(&root, 13);
 push(&root, 15);
 push(&root, 9);
 inOrder(&root);
 printf("\n");
 preOrder(&root);
 printf("\n");
 postOrder(&root);
 printf("\n");
 search(&root,91);
 getchar();
}














Komentar

Postingan populer dari blog ini